838 Short Reports

Phytochemistry, 1976, Vol. 15, p. 838 Pergamon Press. Printed in England.

A NEW FLAVONE 6-GLUCOSIDE FROM CITHAREXYLUM SUBSERRATUM

SUBRAMANIAN MATHURAM, KOZIPARAMBIL K. PURUSHOTHAMAN and AYYAPPATH SARADA Captain Srinivasa Murti Research Institute, Madras 600020, India

and

JOSEPH D. CONNOLLY

Department of Chemistry, University of Glasgow, Glasgow, G12 8QQ, Scotland

Key Word Index—Citharexylum subserratum; Verbenaceae; 5,4'-dihydroxy-7,3'-dimethoxyflavone 6-glucoside.

From the acetone extract of the leaves of Citharexylum subserratum (Verbenaceae) [1] we have isolated a new flavone glucoside which has been assigned the above structure on the following evidence.

The aglucone formed a triacetate mp 224° whose mp. UV and NMR spectrum are identical with those reported [4] for 5,6,4'-triacetoxy-7,3'-dimethoxyflavone. In agreement with this structure the triacetate shows large upfield benzene induced shifts for the two methoxyl groups (0.64, 0.77 ppm) and two acetoxymethyl groups (0.46, 0.5 ppm) and only a marginal shift for the third acetoxymethyl group (0.15 ppm) as would be expected for a 5-acetate. The presence of the vicinal hydroxyl substituents at 5 and 6 was confirmed by the bathochromic shift of 18 nm in band II in the UV spectrum of the original aglucone on addition of NaOAc-H₃BO₃ [5]. Thus the aglucone is 7,3'-dimethoxy-5,6,4'-trihydroxyflavone. Since there is no shift in the position of band I in the UV spectrum of aglucone relative to the glucoside (see Experimental) the sugar residue must be attached to positions 5 or 6 in ring A. The AlCl₃ induced shift of the UV spectrum of the glucoside [λ_{max} 344, 272 nm changing to λ_{max} 370, 302 sh, 286 nm] is indicative [5] of the presence of a hydroxyl group at position 5. In addition, one of the two phenolic acetoxymethyl signals (δ 2.32, 2.44) of the glucoside hexaacetate is deshielded by the carbonyl group and hence is attached to 5. This evidence supports the structure 5,4'-dihydroxy-7,3'dimethoxyflavone 6-glucoside for the new compound. This glucoside is a further addition to the small group of known flavone 6-glucosides [5,6], the first reported member of this series being pedaliin [7].

EXPERIMENTAL

All mp's are uncorrected. NMR spectra were recorded in CDCl₃ with TMS as internal standard.

Isolation. Shade dried Citharexylum subserratum (leaves) collected after flowering commenced (4 kg, coarse powder) was successively exhaustively extracted with hexane, CHCl₃ and

Me₂CO by cold percolation. The Me₂CO extract was concentrated to about 500 ml. and left aside overnight. The solid which separated was filtered and crystallised from EtOH, to give the glucoside mp 256°. The mother liquor was evaporated to dryness in vacuo, treated with H₂O and extracted with Et₂O, EtOAc and n-BuOH. The n-BuOH extract was taken to dryness, the residue redissolved in Me₂CO and left in an ice chest overnight. The separated solid was crystallised from EtOH to give more glucoside (1.6 g). (Found: C, 55.80; H, 5.0 $C_{23}H_{24}O_{12}$ requires C, 56.10; H, 4.9). UV λ_{max}^{EtOH} 344 (ϵ , 22300), 272 (ϵ , 15800); with NaOAc 385 (23000), 351 (ϵ , 24000), 269 (ϵ , 20000); with NaOAc + B₂O₃ 354 (ϵ , 24000), 272 (ϵ , 21000); with AlCl₃ 370 (ϵ , 24000), 286 (ϵ , 19000), 302 sh (e, 18000) nm. Acetylation with Ac₂O/pyridine gave the hexaacetate ex MeOH, mp 136°. (Found: C, 54.7; H, 4.9 C₃₅ $H_{36}O_{18}$ requires C, 55.1; H, 5.0%). NMR: δ 1.99, 2.0, 2.02, 2.08 (3H, s, each, glucose acetates), δ 2.33 (3H, 4'-OAc), 2.44 (3H, 5-OAc), δ 3.91, 3.95 (3' and 7-OMe), δ 6.52 (1H, s, 3-H), δ 6.75 (1H, s, 8-H), δ7.35 (3H, m, 2'-H, 5'-H, 6'-H).

Hydrolysis. To the glucoside (800 mg) in EtOH (20 ml) was added HCl (1:1, 7 ml) and the solution refluxed on a water bath for 12 hr. The product was obtained as a gum, which was crystallised from Me₂CO to yield 7,3'-dimethoxy 5,6,4'-trihydroxyflavone (240 mg), mp (lit[4]251–255°). (Found: C, 61.8; H, 4.40 $C_{17}H_{14}O_7$ requires C, 61.8; H, 4.3%). UV: $\lambda_{\text{max}}^{\text{EiOH}}$ 344 (ϵ , 32500), 284 (ϵ , 30500); with NaOAc 400 (ϵ , 28000), 344 (ϵ , 33000), 287 (ϵ , 31000); with NaOAc + B_2O_3 339 (ϵ , 31 000), 302 (ϵ , 32 000); with AlCl₃ 369 (ϵ , 29000), 296 (ϵ , 28000), 308 sh (ϵ , 20000) nm. Enzymic hydrolysis with β -glucosidase gave the same aglucone and glucose, which was identified by PC. The corresponding triacetate, 5,6,4'-triacetoxy-7,3'-dimethoxyflavone, had mp 224° (lit. [4] 217-219°). (Found: C, 60.7; H, 4.5 C₂₃H₂₀O₁₀ requires C, 60.5; H, 4.4%). Treatment with Me₂SO₄ K₂CO₃ Me₂CO gave 5,6,7,3',4'-pentamethoxyflavone, mp 178° (lit. [2] 178°). (Found: C, 64.5; H, 5.6 C₂₀H₂₀O₇ requires C, 64.5; H, 5.4%). NMR δ 3.91, 3.93, 3.95 (3H each) 3.98 (6H) (5 × OMe).

Acknowledgements—Indian authors thank the Central Council for Research in Indian Medicine and Homoeopathy, Government of India, for financial support and Miss P. Brindha for identification of the plant.

REFERENCES

- Cooke, T. (1958) The Flora of the Presidency of Bombay Vol. II. 518 (Botanical Survey of India, Sri Gouranga Press Private Ltd., Calcutta).
- Rama Rao, A. V. and Venkataraman, K. (1968) Indian J. Chem. 6, 677.
- Jain, A. C. and Seshadri, T. R. (1962) J. Ind. Chem. Soc. 39, 515.
- Fukui, K., Nakayama, M. and Matsui, T. (1969) J. Chem. Soc. Japan 90, 1270.
- The Flavonoids (1975) edited by Harborne, J. B., Mabry, T. J. and Mabry, H., Chapman & Hall, London.
- 6. Okuda, T., Yoshida, T. and Ono, I. (1975) Phytochemistry 14, 1654
- 7. Krishnaswamy, N. R., Seshadri, T. R. and Tahir, P. J. (1968) *Indian J. Chem.* **6**, 676.